SubPagesTopPicture

Elektrodenmaterialien aus der Mikrowelle

Dr. Jennifer Ludwig, Mitarbeiterin der Professur fuer Synthese und Charakterisierung innovativer Materialien der TU Muenchen, hat ein neues Herstellungsverfahren fuer Lithium-Kobaltphosphat (im Bild) entwickelt. (Bild: Andreas Battenberg / TUM - frei für Berichterstattung über TU München)

Strom für unterwegs ist gefragt. Jennifer Ludwig von der Technischen Universität München (TUM) hat ein Verfahren entwickelt, mit dem sich das vielversprechende Hochvolt-Kathodenmaterial Lithium-Kobaltphosphat schnell, einfach, günstig und in höchster Qualität herstellen lässt.

Pressedienst/Redaktion

Die Hoffnung ist pink: Das Pulver, das Jennifer Ludwig vorsichtig in eine Glasschale schüttet und das im Licht der Laborlampe rosarot leuchtet, hat das Potenzial, Akkus in Zukunft noch leistungsfähiger zu machen. «Das Lithium-Kobaltphosphat kann erheblich mehr Energie speichern als herkömmliche Kathodenmaterialien», erklärt die Chemikerin.

Die Mitarbeiterin von Tom Nilges, Inhaber der Professur für Synthese und Charakterisierung innovativer Materialien, hat ein Verfahren entwickelt, mit dem sich das pinke Pulver schnell, mit geringem Energieaufwand und in bester Qualität herstellen lässt.

Lithium-Kobaltphosphat gilt unter Batterieforschern seit einiger Zeit als Material der Zukunft. Es arbeitet bei höherer Spannung als das bisher verwendete Lithium-Eisenphosphat und erreicht daher eine höhere Energiedichte – 800 Wattstunden pro Kilogramm statt bisher knapp 600 Wattstunden.

Kristalle nach Maß

Bisher war die Herstellung des vielversprechenden Hochvolt-Kathodenmaterials jedoch aufwändig, energieintensiv und wenig effizient: Man benötigte drastische Bedingungen mit Temperaturen von 900 Grad und einem nachfolgenden energieintensiven Schritt zu nanokristallinem Pulver Die entstehenden Körnchen besitzen dann nur in einer Richtung genügend ionische Leitfähigkeit.

Die von Jennifer Ludwig entwickelte Mikrowellen-Synthese löst all diese Probleme auf einen Schlag: Für die Gewinnung von hochreinem Lithium-Kobaltphosphat benötigt man nur ein kleines Mikrowellen-Gerät und eine halbe Stunde Zeit.

Die Reagenzien werden zusammen mit einem Lösungsmittel in einem Teflon-Behälter erhitzt. Gerade einmal 600 Watt Leistung reichen aus, um die notwendige Temperatur von 250 Grad zu erzeugen und die Kristallbildung anzuregen.

Die sich dabei bildenden flachen Plättchen haben einen Durchmesser von weniger als einem Mikrometer, eine Dicke von wenigen hundert Nanometern, und die Achse höchster Leitfähigkeit ist in Richtung Oberfläche orientiert. «Diese Form sorgt für eine bessere elektrochemische Leistungsfähigkeit, weil die Lithium-Ionen nur kurze Wege im Kristall zurücklegen müssen», erläutert Ludwig.

Gezielte Steuerung der Reaktion

Und noch ein weiteres Problem konnte die Chemikerin bei ihren Experimenten lösen: Bei Temperaturen von über 200 Grad und unter hohem Druck entsteht mitunter nicht das gewünschte Lithium-Kobaltphosphat, sondern ein bisher unbekanntes, komplexes Kobalt-Hydroxid-Hydrogenphosphat.

Jennifer Ludwig gelang es, den Reaktionsweg aufzuklären, die chemische Verbindung zu isolieren und dessen Struktur und Eigenschaften zu bestimmen. Da die neue Verbindung als Batteriematerial ungeeignet ist, modifizierte sie die Reaktionsbedingungen so, dass nur das gewünschte Lithium-Kobaltphosphat entsteht.

«Mit dem neuen Herstellungsverfahren können wir nun in einem einzigen Prozessschritt die leistungsfähigen, plättchenförmigen Lithium-Kobaltphosphat-Kristalle maßgeschneidert und in hoher Qualität herstellen», urteilt Professor Nilges. «Damit ist eine weitere Hürde auf dem Weg zu neuen Hochvolt-Materialien überwunden.»